3.2.94 \(\int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\) [194]

Optimal. Leaf size=217 \[ -\frac {11 \sqrt [4]{-1} a^{3/2} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d} \]

[Out]

-11/4*(-1)^(1/4)*a^(3/2)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(-2+2*I)*a^(3/
2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+5/4*a*tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c)
)^(1/2)/d+1/2*I*a^2*tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*x+c))^(1/2)-1/2*a^2*tan(d*x+c)^(5/2)/d/(a+I*a*tan(d*x+c))^
(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.44, antiderivative size = 217, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3637, 3676, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \begin {gather*} -\frac {11 \sqrt [4]{-1} a^{3/2} \text {ArcTan}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(-11*(-1)^(1/4)*a^(3/2)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(4*d) - ((
2 - 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d + ((I/2)*a^2*Tan[
c + d*x]^(3/2))/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (a^2*Tan[c + d*x]^(5/2))/(2*d*Sqrt[a + I*a*Tan[c + d*x]]) + (
5*a*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(4*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3637

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[a/(d*(m + n - 1
)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Intege
rsQ[2*m, 2*n])

Rule 3676

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f
*m)), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d
*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps

\begin {align*} \int \tan ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {1}{2} a \int \frac {\tan ^{\frac {3}{2}}(c+d x) \left (\frac {9 a}{2}+\frac {7}{2} i a \tan (c+d x)\right )}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (\frac {3 i a^2}{2}-\frac {5}{2} a^2 \tan (c+d x)\right ) \, dx}{2 a}\\ &=\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}-\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {5 a^3}{4}+\frac {11}{4} i a^3 \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{2 a^2}\\ &=\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {11}{8} \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx-(2 a) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {\left (11 a^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d}+\frac {\left (4 i a^3\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {\left (11 a^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{4 d}\\ &=-\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {\left (11 a^2\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}\\ &=-\frac {11 \sqrt [4]{-1} a^{3/2} \tan ^{-1}\left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2-2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {i a^2 \tan ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}-\frac {a^2 \tan ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a+i a \tan (c+d x)}}+\frac {5 a \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 3.34, size = 234, normalized size = 1.08 \begin {gather*} \frac {i a e^{-i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (16 \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )-11 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{4 \sqrt {2} d \sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}}}+\frac {a (5+2 i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((I/4)*a*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(16*ArcTanh[E^
(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] - 11*Sqrt[2]*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I
)*(c + d*x))]]))/(Sqrt[2]*d*E^(I*(c + d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))])
 + (a*(5 + (2*I)*Tan[c + d*x])*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(4*d)

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 404 vs. \(2 (171 ) = 342\).
time = 0.17, size = 405, normalized size = 1.87

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (4 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -4 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -4 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -10 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{8 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(405\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (4 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a -4 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+16 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -4 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -10 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}\right )}{8 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(405\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(4*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a-4*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(
1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+16*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-4*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(
1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-10*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1
/2)*(-I*a)^(1/2)-11*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2
))*a*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 600 vs. \(2 (161) = 322\).
time = 0.38, size = 600, normalized size = 2.76 \begin {gather*} \frac {\sqrt {2} {\left (7 \, a e^{\left (3 i \, d x + 3 i \, c\right )} + 3 \, a e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {121 i \, a^{3}}{16 \, d^{2}}} \log \left (\frac {{\left (11 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 8 \, \sqrt {-\frac {121 i \, a^{3}}{16 \, d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{11 \, a}\right ) - 2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {121 i \, a^{3}}{16 \, d^{2}}} \log \left (\frac {{\left (11 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - 8 \, \sqrt {-\frac {121 i \, a^{3}}{16 \, d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{11 \, a}\right ) - 2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) + 2 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} \log \left (\frac {{\left (2 \, \sqrt {2} {\left (a e^{\left (2 i \, d x + 2 i \, c\right )} + a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - \sqrt {-\frac {8 i \, a^{3}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right )}{4 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(7*a*e^(3*I*d*x + 3*I*c) + 3*a*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 2*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-121/16*I*a^3/d^2)*log(1/11
*(11*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(
e^(2*I*d*x + 2*I*c) + 1)) + 8*sqrt(-121/16*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) - 2*(d*e^(2*I*d*x
 + 2*I*c) + d)*sqrt(-121/16*I*a^3/d^2)*log(1/11*(11*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2
*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 8*sqrt(-121/16*I*a^3/d^2)*d*e^(I*d*
x + I*c))*e^(-I*d*x - I*c)/a) - 2*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-8*I*a^3/d^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*
d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1
)) + sqrt(-8*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) + 2*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-8*I*a^3/d
^2)*log(1/2*(2*sqrt(2)*(a*e^(2*I*d*x + 2*I*c) + a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - sqrt(-8*I*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a))/(d*e^(2*I*d*x
 + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)*tan(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%{[%%%{%%{poly1[-16*i,0]:[1,0,-2]%%},[0]%%%},0]:[1,0,%%
%{-1,[1]%%%

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(tan(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2), x)

________________________________________________________________________________________